The classification of almost simple $\tfrac {3}{2}$-transitive groups
نویسندگان
چکیده
منابع مشابه
The Transitive Permutation Groups of Degree 32
We describe our successful computation of a list of representatives of the 2 801 324 conjugacy classes of transitive groups of degree 32.
متن کاملOD-characterization of almost simple groups related to U3(11)
Let $L := U_3(11)$. In this article, we classify groups with the same order and degree pattern as an almost simple group related to $L$. In fact, we prove that $L$, $L:2$ and $L:3$ are OD-characterizable, and $L:S_3$ is $5$-fold OD-characterizable.
متن کاملA Simple Classification of Finite Groups of Order p2q2
Suppose G is a group of order p^2q^2 where p>q are prime numbers and suppose P and Q are Sylow p-subgroups and Sylow q-subgroups of G, respectively. In this paper, we show that up to isomorphism, there are four groups of order p^2q^2 when Q and P are cyclic, three groups when Q is a cyclic and P is an elementary ablian group, p^2+3p/2+7 groups when Q is an elementary ablian group an...
متن کاملBiplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle
In this paper we prove that there cannot be a biplane admitting a primitive, flagtransitive automorphism group of almost simple type, with alternating or sporadic socle.
متن کاملDistance Transitive Graphs and Finite Simple Groups
This paper represents the first step in the classification of finite primitive distance transitive graphs. In it we reduce the problem to the case where the automorphism group is either almost simple or affine. Let ^ be a simple, connected, undirected graph with vertex set Q. If oc, /? e Q, then d(a, j8) denotes the distance between a and /3 in §. Let G be some group of automorphisms of §. Then...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2013
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-2013-05758-3